Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EClinicalMedicine ; 57: 101898, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2248893

ABSTRACT

Background: Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. Methods: We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. Findings: 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, -3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; -9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. Interpretation: Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. Funding: Grifols.

2.
Antimicrob Agents Chemother ; 67(3): e0151422, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2269374

ABSTRACT

Anti-SARS-CoV-2 immunoglobulin (human) investigational product (COVID-HIGIV) is a purified immunoglobulin preparation containing SARS-CoV-2 polyclonal antibodies. This single-center clinical trial aimed to characterize the safety and pharmacokinetics of COVID-HIGIV in healthy, adult volunteers. Participants were enrolled to receive one of three doses of COVID-HIGIV (100, 200, 400 mg/kg) or placebo in a 2:2:2:1 randomization scheme. Between 24 December 2020 and 27 July 2021, 28 participants met eligibility and were randomized with 27 of these 28 (96.4%) being administered either COVID-HIGIV (n = 23) or placebo (n = 4). Only one SAE was observed, and it occurred in the placebo group. A total of 18 out of 27 participants (66.7%) reported 50 adverse events (AEs) overall. All COVID-HIGIV-related adverse events were mild or moderate in severity and transient. The most frequent AEs (>5% of participants) reported in the safety population were headache (n = 6, 22.2%), chills (n = 3, 11.1%), increased bilirubin (n = 2, 7.4%), muscle spasms (n = 2, 7.4%), seasonal allergies (n = 2, 7.4%), pyrexia (n = 2, 7.4%), and oropharyngeal pain (n = 2, 7.4%). Using the SARS-CoV-2 binding IgG immunoassay (n = 22, specific for pharmacokinetics), the geometric means of Cmax (AU/mL) for the three COVID-HIGIV dose levels (low to high) were 7.69, 17.02, and 33.27 AU/mL; the average values of Tmax were 7.09, 7.93, and 5.36 h, respectively. The half-life of COVID-HIGIV per dose level was 24 d (583 h), 31 d (753 h), and 26 d (619 h) for the 100 mg/kg, 200 mg/kg, and 400 mg/kg groups, respectively. The safety and pharmacokinetics of COVID-HIGIV support its development as a single-dose regimen for postexposure prophylaxis or treatment of COVID-19.


Subject(s)
COVID-19 , Humans , Adult , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Administration, Intravenous , Double-Blind Method
3.
Process Biochem ; 127: 66-81, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2221248

ABSTRACT

The pandemic COVID-19 has spread widely throughout the globe and has been responsible for millions of deaths worldwide. Recently, it has been identified that there is no specific and 100% effective treatment available to manage the infection especially for the severe cases. A significant amount of research efforts and clinical trials have been undertaken globally and many more are underway to find the potential treatment option. Earlier, convalescent plasma or hyperimmune immunoglobulin was effectively used in the treatment of many endemic or epidemic viral infections as a part of passive immunization. In this article, we have touched upon the immunopathology of COVID-19 infection, a basic understanding of convalescent plasma, it's manufacturing as well as evaluation, and have reviewed the scientific developments focussing on the potential of convalescent plasma vis-à-vis other modalities for the management of COVID-19. The article also covers various research approaches, clinical trials conducted globally, and the clinical trials which are at various stages for exploring the efficacy and safety of the convalescent plasma therapy (CPT) to predict its future perspective to manage COVID-19.

4.
Immunotherapy ; 14(14): 1133-1147, 2022 10.
Article in English | MEDLINE | ID: covidwho-1963293

ABSTRACT

Background: The authors describe the developmental process of intravenous anti-COVID-19 hyperimmune immunoglobulin from anti-SARS-CoV-2 neutralizing antibody-containing plasma. Furthermore, the authors investigated its safety and protective activity in animal models. Materials & methods: The manufacturing process included standard ethanol fractionation, chromatographic purification steps and virus removal or inactivation. Results: The authors produced pure and safe immunoglobulin for intravenous administration, with 98.1 ± 6.5 mg/ml protein content, of which 97.6 ± 0.7% was IgG. The concentration factor of SARS-CoV-2 neutralizing antibodies was 9.4 ± 1.4-times. Safety studies in animals showed no signs of acute/chronic toxicity or allergenic or thrombogenic properties. Intravenous anti-COVID-19 hyperimmune immunoglobulin protected immunosuppressed hamsters against SARS-Cov-2. Conclusion: The obtained results can allow the start of clinical trials to study the safety and efficacy in healthy adults.


An intravenous immunoglobulin with a high concentration of SARS-CoV-2-neutralizing antibodies was prepared from COVID-19 convalescent plasma, which could be utilized as a passive immunization tool in regard to COVID-19 treatment. The manufacturing process employed conforms to commonly held business standards within the intravenous immunoglobulin industry and includes plasma ethanol fractionation following chromatographic purification and special virus removal or inactivation steps. The results of the preclinical in vitro and in vivo experiments demonstrate that the immunoglobulin produced in this study is pure and safe enough to be considered for intravenous applications. The SARS-CoV-2 neutralizing antibody concentration was found to have increased 9.4 ± 1.4-times compared with human plasma. The anti-COVID-19 hyperimmune immunoglobulin showed no signs of toxicity and did not cause any blood clot formations when administered to rabbits. Furthermore, the anti-COVID-19 hyperimmune immunoglobulin was demonstrated to protect immunosuppressed hamsters against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Intravenous , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive/methods , Immunoglobulins, Intravenous/therapeutic use , COVID-19 Serotherapy
5.
J Infect Dis ; 225(6): 938-946, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1740891

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) vaccinations have provided a significant reduction in infections, effective COVID-19 treatments remain an urgent need. METHODS: Functional characterization of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hyperimmune immunoglobulin (hIG) from human convalescent plasma was performed by different virus neutralization methodologies (plaque reduction, virus-induced cytotoxicity, median tissue culture infectious dose [TCID50] reduction, and immunofluorimetry) at different laboratories using geographically different SARS-CoV-2 isolates (USA [1], Italy [1], and Spain [2]; 2 containing the D614G mutation). Neutralization capacity against the original Wuhan SARS-CoV-2 strain and variants (D614G mutant, B.1.1.7, P.1, and B.1.351) was evaluated using a pseudovirus expressing the corresponding spike (S) protein. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) was also evaluated. RESULTS: All SARS-CoV-2 isolates were potently neutralized by hIG as shown by all 4 methodologies. Wild-type SARS-CoV-2 and variants were effectively neutralized using the pseudovirus. The hIG (IgG type) induced ADCC and ADCP against SARS-CoV-2 N and S proteins but not E protein. Very low concentrations (25-100 µg IgG/mL) were required. A potent effect was triggered by antibodies in hIG solutions against the SARS-CoV-2 S and N proteins. CONCLUSIONS: Beyond neutralization, IgG Fc-dependent pathways may play a role in combatting SARS-CoV-2 infections using COVID-19 hIG. This could be especially relevant for the treatment of more neutralization-resistant SARS-CoV-2 variants.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19/blood , COVID-19/therapy , Phagocytosis/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/immunology , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
6.
Pan Afr Med J ; 35(Suppl 2): 80, 2020.
Article in English | MEDLINE | ID: covidwho-948223

ABSTRACT

As the novel coronavirus continues to spread globally and across Africa, efforts are being accelerated to identify effective preventive and therapeutic measures to mitigate its burden. Convalescent plasma and hyperimmune immunoglobulin are being considered as potential therapeutic options for the coronavirus disease 2019 (COVID-19). We highlight and contextualize the findings of a recent Cochrane rapid review that evaluated the effectiveness and safety of convalescent plasma or hyperimmune immunoglobulin transfusion in the treatment of people with COVID-19. From the eight studies it included, the review found limited and low-certainty evidence on the effectiveness and safety of convalescent plasma therapy in patients with COVID-19. The evidence was limited by the small number of participants and low-quality of included studies, as well as the inconsistency of outcome measures and reporting across studies. As African countries brace for the further spread of the virus, while exploring potential therapeutic options to mitigate its morbidity and mortality at peak, convalescent plasma transfusion may offer a therapeutic ray of hope for the continent. Considering the limited evidence of the effectiveness and safety in the treatment of COVID-19, it is imperative for this therapy to be investigated within African contexts to ascertain not only its effectiveness and safety, but also its practical implications within the capacity of national blood transfusion services and health systems in the region.


Subject(s)
COVID-19/therapy , Africa/epidemiology , COVID-19/epidemiology , Humans , Immunization, Passive , COVID-19 Serotherapy
7.
Hum Vaccin Immunother ; 16(12): 2963-2972, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-786985

ABSTRACT

Passive immunotherapeutics (PITs), including convalescent plasma, serum, or hyperimmune immunoglobulin, have been of clinical importance during sudden outbreaks since the early twentieth century for the treatment of viral diseases such as severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and swine flu (H1N1). With the recent SARS-CoV-2 pandemic, wherein effective antivirals and vaccines are still lacking, an interest in convalescent plasma therapy as a lifesaving option has resurfaced due to its capacity for antigenic neutralization and reducing viremia. This review summarizes convalescent blood products (CBPs) in terms of current technologies and the shortcomings related to the collection, manufacture, pathogen inactivation, and banking of CBPs, with a specific focus on their plausible applications, benefits, and risks in the COVID-19 pandemic.


Subject(s)
COVID-19/therapy , Immunization, Passive/methods , COVID-19/epidemiology , COVID-19/immunology , Humans , Immunization, Passive/trends , Risk Assessment/methods , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL